

ADVANCED GCE UNIT

MATHEMATICS

Probability & Statistics 2

MONDAY 18 JUNE 2007

Morning

4733/01

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [F/102/2705]

OCR is an exempt Charity

[Turn over

1 A random sample of observations of a random variable X is summarised by

$$n = 100, \quad \Sigma x = 4830.0, \quad \Sigma x^2 = 249509.16.$$

- (i) Obtain unbiased estimates of the mean and variance of X.
- (ii) The sample mean of 100 observations of X is denoted by \overline{X} . Explain whether you would need any further information about the distribution of X in order to estimate $P(\overline{X} > 60)$. [You should not attempt to carry out the calculation.] [2]
- 2 It is given that on average one car in forty is yellow. Using a suitable approximation, find the probability that, in a random sample of 130 cars, exactly 4 are yellow. [5]
- 3 The proportion of adults in a large village who support a proposal to build a bypass is denoted by *p*. A random sample of size 20 is selected from the adults in the village, and the members of the sample are asked whether or not they support the proposal.
 - (i) Name the probability distribution that would be used in a hypothesis test for the value of p. [1]
 - (ii) State the properties of a random sample that explain why the distribution in part (i) is likely to be a good model. [2]
- 4 X is a continuous random variable.
 - (i) State two conditions needed for X to be well modelled by a normal distribution. [2]
 - (ii) It is given that $X \sim N(50.0, 8^2)$. The mean of 20 random observations of X is denoted by \overline{X} . Find $P(\overline{X} > 47.0)$. [4]
- 5 The number of system failures per month in a large network is a random variable with the distribution $Po(\lambda)$. A significance test of the null hypothesis $H_0: \lambda = 2.5$ is carried out by counting R, the number of system failures in a period of 6 months. The result of the test is that H_0 is rejected if R > 23 but is not rejected if $R \le 23$.
 - (i) State the alternative hypothesis. [1]
 - (ii) Find the significance level of the test.

[3]

[4]

- (iii) Given that P(R > 23) < 0.1, use tables to find the largest possible actual value of λ . You should show the values of any relevant probabilities. [3]
- 6 In a rearrangement code, the letters of a message are rearranged so that the frequency with which any particular letter appears is the same as in the original message. In ordinary German the letter e appears 19% of the time. A certain encoded message of 20 letters contains one letter e.
 - (i) Using an exact binomial distribution, test at the 10% significance level whether there is evidence that the proportion of the letter e in the language from which this message is a sample is less than in German, i.e., less than 19%.
 - (ii) Give a reason why a binomial distribution might not be an appropriate model in this context. [1]

7 Two continuous random variables S and T have probability density functions as follows.

$$S: \qquad f(x) = \begin{cases} \frac{1}{2} & -1 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$
$$T: \qquad g(x) = \begin{cases} \frac{3}{2}x^2 & -1 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (i) Sketch on the same axes the graphs of y = f(x) and y = g(x). [You should not use graph paper or attempt to plot points exactly.] [3]
- (ii) Explain in everyday terms the difference between the two random variables. [2]

[5]

- (iii) Find the value of t such that P(T > t) = 0.2.
- 8 A random variable Y is normally distributed with mean μ and variance 12.25. Two statisticians carry out significance tests of the hypotheses $H_0: \mu = 63.0, H_1: \mu > 63.0$.
 - (i) Statistician A uses the mean \overline{Y} of a sample of size 23, and the critical region for his test is $\overline{Y} > 64.20$. Find the significance level for A's test. [4]
 - (ii) Statistician B uses the mean of a sample of size 50 and a significance level of 5%.
 - (a) Find the critical region for B's test. [3]
 - (b) Given that $\mu = 65.0$, find the probability that B's test results in a Type II error. [4]
 - (iii) Given that, when $\mu = 65.0$, the probability that A's test results in a Type II error is 0.1365, state with a reason which test is better. [2]
- 9 (a) The random variable G has the distribution B(n, 0.75). Find the set of values of n for which the distribution of G can be well approximated by a normal distribution. [3]
 - (b) The random variable H has the distribution B(n, p). It is given that, using a normal approximation, $P(H \ge 71) = 0.0401$ and $P(H \le 46) = 0.0122$.
 - (i) Find the mean and standard deviation of the approximating normal distribution. [6]
 - (ii) Hence find the values of *n* and *p*. [4]

4733/01 Jun07

1	(i)	$\hat{\mu} = 4830.0/100 = 48.3$	B1		48.3 seen
		$249509.16/100 - (\text{their } \bar{x}^2)$	M1		Biased estimate: 162.2016: can get B1M1M0
		× 100/99	M1		Multiply by $n/(n-1)$
		= 163.84	A1	4	Answer, 164 or 163.8 or 163.84
	(ii)	No, Central Limit theorem applies,	B2	2	"No" with statement showing CLT is understood
	(11)	so can assume distribution is	02	-	(though CLT does not need to be mentioned)
		normal			[SR: No with reason that is not wrong: B1]
2		B(130, 1/40)	B1		B(130, 1/40) stated or implied
-		$\approx Po(3.25)$	M1		Poisson, <i>or</i> correct N on their $B(n, p)$
			A1√		Parameter their <i>np</i> , <i>or</i> correct parameter(s) $$
		$e^{-\lambda} \frac{\lambda^2}{4!}$	M1 M1		Correct formula, or interpolation
		= 0.180	Al	5	Answer, 0.18 or a.r.t. 0.180
		- 0.180	ЛІ	3	[SR: N(3.25, 3.17) or N(3.25, 3.25): B1M1A1]
3	(i)	Binomial	B1	1	Binomial stated or implied
3	(ii)	Each element equally likely	B1		All elements, or selections, equally likely stated
	(11)	Choices independent	B1 B1	2	Choices independent [not just "independent"]
		Choices independent	DI	2	[can get B2 even if (i) is wrong]
4	(i)	<i>Two of:</i> Distribution symmetric	B1		One property
4	(1)	No substantial truncation	B1 B1	2	Another definitely different property
		Unimodal/Increasingly	DI	2	Don't give both marks for just these two
		6,			"Bell-shaped": B1 only unless "no truncation"
	(::)	unlikely further from μ , etc Variance $8^2/20$	N/1		
	(ii)		M1		Standardise, allow cc, don't need <i>n</i>
		$z = \frac{47.0 - 50.0}{50.0} = -1.677$	A1		Denominator (8 or 8 ² or $\sqrt{8}$) ÷ (20 or $\sqrt{20}$ or 20 ²)
		$\sqrt{8^2}$ / 20	A1	4	<i>z</i> -value, a.r.t1.68 or +1.68
		$\Phi(1.677) = 0.9532$	A1	4	Answer, a.r.t. 0.953
5	(i)	H ₁ : $\lambda > 2.5$ or 15	B1	1	$\lambda > 2.5$ or 15, allow μ , don't need "H ₁ "
	(ii)	Use parameter 15	M1		$\lambda = 15$ used [N(15, 15) gets this mark only]
	. /	P(>23)	M1		Find P(> 23 or \ge 23), final answer < 0.5
					eg 0.0327 or 0.0122
		1 - 0.9805 = 0.0195 or $1.95%$	A1	3	Answer, 1.95% or 2% or 0.0195 or 0.02
					[SR: 2-tailed, 3.9% gets 3/3 here]
	(iii)	$P(\le 23 \mid \lambda = 17) = 0.9367$	M1		One of these, or their complement: .9367, .8989,
		$P(\le 23 \mid \lambda = 18) = 0.8989$			0.9047, 0.8551, .9317, .8933, .9907, .9805
		Parameter = 17	A1		Parameter 17 [17.1076], needs $P(\le 23)$, cwo
					[SR: if insufficient evidence can give B1 for 17]
		$\lambda = 17/6 \text{ or } 2.83$	M1	3	Their parameter $\div 6$ [2.85]
					[SR: Solve $(23.5 - \lambda)/\sqrt{\lambda} = 1.282$ M1; 18.05 A0]
6	(i)	$H_0: p = 0.19, H_1: p < 0.19$	B2		Correct, B2. One error, B1, but x or \overline{x} or r: B0
v	(1)	where p is population proportion	M1		Binomial probabilities, allow 1 term only
		$0.81^{20} + 20 \times 0.81^{19} \times 0.19$	Al		Correct expression $[0.0148 + 0.0693]$
		= 0.0841	Al		Probability, a.r.t. 0.084
		Compare 0.1	B1		Explicit comparison of "like with like"
	or	Add binomial probs until ans > 0.1	Al		$[P(\le 2) = 0.239]$
	07	Critical region ≤ 1	B1		$\begin{bmatrix} \mathbf{I} (\leq 2) & 0.257 \end{bmatrix}$
		Reject H_0	M1		Correct deduction and method [needs $P(\le 1)$]
		Significant evidence that proportion	A1√	8	Correct deduction and method [needs $P(\leq 1)$] Correct conclusion in context
		of e 's in language is less than 0.19		σ	[SR: N(3.8, 3.078): B2M1A0B1M0]
	(ji)		D 1	1	
	(ii)	Letters not independent	B1	1	Correct modelling assumption, stated in context
			1		Allow "random", "depends on message", etc

r						r		1				
7	(i)	1				B1			contal straight			
		X				B1		Positive parabola, symmetric about			about 0	
						B1 3		Completely correct, including correct relationship				
								-	between two			
								Don'	t need vertic	al lines or he	orizontal lines outside	
											f horizontal line	
		-						-	nues past "±		r nonzonar mie	
								contin		1		
	(ii)	in range, <i>T</i> is more likely at extremities		B2	2	Corre	Correct statement about distributions (not graphs)					
							[Partial statement, or correct description					
								for one o	only: B1]	-		
	(iii)			M1		Integ		n limits (–1,	<i>t</i>) or (<i>t</i> , 1)			
		(iii) $\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x^{3}}{2}\right]_{t}^{1}$				0	[recoverable if <i>t</i> used later]					
					B1		Corre	ct indefinite		-		
		$\frac{1}{2}(1-t^3) = 0.2 \text{ or } \frac{1}{2}(t^3+1) = 0.8$			M1			Equate to 0.2, or 0.8 if $[-1, t]$ used				
		$t^3 = 0.6$				M1			Solve cubic equation to find t			
	t = 0.8434				A1	5		Answer, in range [0.843, 0.844]				
8	(i)		M1dep			lardise 64.2		-				
		$\frac{64.2-63}{\sqrt{12.25/23}}$		A1				5, must be $+$				
		$V_{12,237,25}$ P(z > 1.644)							Find $\Phi(z)$, answer < 0.5			
		P(z > 1.644) = 0.05				dep M1 A1	4		Answer, a.r.t. 0.05 or 5.0%			
	(ii)	(ii) (a) $63 + 1.645 \times \frac{3.5}{\sqrt{50}}$ ≥ 63.81 (b) $P(< 63.8 \mid \mu = 65)$		M1			$63 + 3.5 \times k / \sqrt{50}$, k from Φ^{-1} , not –					
	(11)			B1								
				A1	3		k = 1.645 (allow 1.64, 1.65)					
					<u> </u>		Answer, a.r.t. 63.8, allow >, ≥, =, c.w.o.					
				M1			Use of correct meaning of Type II Standardise their <i>c</i> with $\sqrt{50}$ $z = (\pm) 2.40$ [or -2.424 or - 2.404 etc]					
		$\frac{63.8 - 65}{3.5 / \sqrt{50}} = -2.3956$			M1							
		$\frac{1}{3.5/\sqrt{50}}$ 0.0083				A1						
						A1	4	Answ	ver, a.r.t. 0.0	08 [eg, 0.00'	767]	
	(iii) B better: Type II error smaller			B2√	2	This	answer: B2.	"B because	sample bigger": B1.			
		(and same Type I error)						[SR: Partial answer: B1]			B1]	
9	(a)					M2		Use e	either $nq > 5$	or $npq > 5$		
		0.75n > 5 is relevant						[SR: If M0, use $np > 5$, or " $n = 20$ " seen			or " <i>n</i> = 20" seen: M1]	
		n > 20					3	Final answer $n > 20$ or $n \ge 20$ only				
	(b)					M1		Standardise once, and equate to Φ^{-1} , $\pm cc$				
	÷. •.	μ-46.		A1		Standardise twice, signs correct, cc correct						
		•		B1			Both 1.75 and 2.25					
		Solve s		M1		Corre	Correct solution method to get one variable					
		$\mu = 60$.t. 60.0 or ±			
		$\sigma = 6$									elow): A1 both]	
		~ ~						Í		M1A0B1M		
1		(ii) $np = 60, npq = 36$						np =	60 and npq =			
		q = 36/60 = 0.6						Solve to get q or p or n				
		p = 0.4							.4 $\sqrt{\text{on wrote}}$			
		n = 150)			A1√ A1√	4	-	50 $\sqrt{\text{on wrote}}$	0		
L					_		-					
		-	10 5	165	σ	μ		$\frac{q}{q}$	<i>p</i> (±0.01)	<i>n</i>		
		7	0.5	46.5	6	60		0.6	0.4	150		
			7 1	4.5	6.05	60.062	~	(50 +	0.0407	171.0		
			71	46	6.25	5	0.	6504	0.3496	171.8		
		_	.1 .7	16 -	6.05	60.562	~	6450	0.0550	170 (
		7	1.5	46.5	6.25	5	0.	6450	0.3550	170.6		
		_				59.562	^			1 = 2 - 2		
			0.5	45.5	6.25	5		6558	0.3442	173.0		
			1.5	45.5	6.5	60.125		7027	0.2973	202.2		
	70 46 6					59.5	0.	6050	0.3950	150.6		